THE USE OF ¹³C-NMR IN THE DETERMINATION OF STRUCTURES: A CORRECTION OF THE STRUCTURE OF BORJATRIOL*

SERAFÍN VALVERDE and BENJAMÍN RODRÍGUEZ Instituto de Química Orgánica General, C.S.I.C., Juan de la Cierva, 3. Madrid-6, Spain

(Received 14 March 1977)

Key Word Index—Diterpenoids; borjatriol; 8a,13-epoxy-labdane derivatives.

Abstract—13C-NMR data of two borjatriol derivatives show that the carbocyclic hydroxyl function is placed on C-7, modifying the previous assignment on C-6.

As part of a study [1, 2] of the effects of substituents on 13 C-NMR of diterpenoids, the data on two derivatives (1, 2) of borjatriol (6S,14R,15-trihydroxy-8 α ,13-epoxylabdane) [3] have been obtained.

According to the data (Table 1), the hydroxyl group originally located on C-6 must instead be located at C-7. The former assignment was based principally on the ¹H-NMR spectrum of compound 2. Two distinct signals at $\delta 2.42$ (1H, singlet) and $\delta 2.55$ (2H, AB quartet, $J_{AB} = 14$ Hz) were apparent. When the spectrum was measured at 100 MHz (previous ¹H-NMR spectra were obtained at 60 MHz) an eight peaked signal was obtained, the AB part of an ABX pattern, similar to the signal observed for the C-3 methylene group in flavanones [6]. Thus borjatriol is 7S,14R,15-trihydroxy-8 α ,13-epoxy-labdane (3).

Table 1. Carbon-13 chemical shifts* of compounds 1 and 2

Carbon atom	1	2	Carbon atom	1	2
1	38.8	39.0	11	14.1	14.3
2	18.5	18.3	12	31.4	30.5
3	41.9	41.7	13	73.5	74.9
4	33.2	33.7	14	82.6	81.9
5	56.2†	56.7	15	65.3	65.5
6	26.9	35.8	16	24.8	24.6
7	80.6	209.1	17	19.4	23.1
8	78.6	80.7	18	33.3	32.6
9	54.1†	59.0	19	21.3	20.7
10	37.0	37.0	20	15.9	15.2

^{*} Assignments have been made taking into account published data [4, 5] and additivity rules. Assignments marked†could be reversed.

EXPERIMENTAL

The Fourier transform ¹³C-NMR spectra were obtained on a Varian XL-100-12 WG spectrometer operating at 25.16 MHz (compound 1) and on a Bruker Spectrospin at 15.08 MHz (compound 2). The samples were examined as M soln in CDCl₃ using TMS as internal standard. Assignments were made with the aid of off-resonance and noise-decoupled ¹³C-NMR spectra.

Acknowledgement—The authors thank Dr. R. M. Rabanal, Gif-sur-Yvette, France, for recording the ¹³C-NMR spectra.

REFERENCES

- Von Carstenn-Lichterfelde, C., Pascual, C., Pons, J., Rabanal, R. M., Rodríguez, B. and Valverde, S. (1976) Tetrahedron Letters 3569.
- Von Carstenn-Lichterfelde, C., Pascual, C., Rabanal, R. M., Rodríguez, B. and Valverde, S. (1977) Tetrahedron in press.
- 3. Rodríguez, B. and Valverde, S. (1973) Tetrahedron 29, 2837.
- Almqvist, S.-O., Enzell, C. R. and Wehrli, F. W. (1975) Acta Chem. Scad. B 29, 695.
- Buckwalter, B. L., Burfitt, I. R., Nagel, A. A., Wenkert, E. and Näf, F. (1975) Helv. Chim. Acta 58, 1567.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) The Systematic Identification of Flavonoids p. 331. Springer-Verlag, New York.

^{*} Part 36 in the series 'Studies on diterpenes from Sideritis genus'. For part 35 see Rodríguez. B. (1977) An. Quím. in press.